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Abstract 
 

Adaptive control technology is developed for the 
inner-loop speed and steering control of the MAX 
Rover. MAX, a CMU developed Rover, is a compact 
low-cost 4-wheel drive, 4-wheel steer (double 
Ackerman), with high-clearance agile durable chassis. 
It is outfitted with sensors and electronics that make it 
ideally suited for supporting research relevant to 
intelligent tele-operation, and as a low-cost 
autonomous robotic test bed and appliance. The 
control design consists of a feedback linearization 
based controller with a proportional-integral (PI) 
feedback that is augmented by an online adaptive 
neural network. The adaptation law has guaranteed 
stability properties for safe operation. The control 
design is retrofit in nature so that it fits below the 
outer-loop path planning algorithms. Successful 
hardware implementation of the controller is 
illustrated for several scenarios consisting of actuator 
failures and modeling errors in the nominal design.  
 
1. Introduction 
 

The Mars Rover Program illustrated the critical role 
of Rovers in exploration systems for assessing risks, 
gathering scientific information, and preparing for 
eventual human missions [1]. While significant 
attention has been given towards the development of 
their autonomous path planning and scheduling 
algorithms, the inner-loop control laws still consist of 

basic Proportional-Integral-Derivative (PID) 
algorithms. The PID control gains typically need to be 
hand-tuned for specific operating conditions. These 
include the Rover mass and inertia characteristics, 
along with the operating surface characteristics. Since 
the controller is static in design, performance is traded 
for robustness. In addition, explicit fault identification, 
classification, and isolation are needed for system 
failures. This is a feasible mode of design for specific 
operations involving a few Rovers. However, missions 
involving multiple Rovers, or missions desiring higher 
performance from a single Rover, dictate a clear need 
for more autonomy at the inner-loop controller level.  

The Adaptive Control and Evolvable Systems 
(ACES) group at NASA Ames Research Center in 
collaboration with industry and academia has been 
actively developing adaptive control technologies for 
different aircraft platforms. The Georgia Tech/NASA 
Ames Intelligent-flight-control (IFC) program has been 
successfully implemented for controlling different 
flight platforms, ranging from small un-manned 
vehicles (UAVs) to fighter aircrafts to military and 
civilian transport planes [2-3]. The control architecture 
adapts for modeling uncertainties, as well as system 
and actuator failures. A recently concluded flight test 
on an F-15 research aircraft at the Dryden Flight 
Research Center has highlighted the success of this 
program. A critical feature of the IFC architecture has 
been its plug-n-play nature as illustrated by its 
implementation on different classes of aircraft 



 
 

Figure 1. IFC-like Rover Guidance, Navigation, and Control Architecture 
 

platforms. The goal of this research is to investigate the 
feasibility of application of the IFC architecture to 
space systems. Towards realizing this goal, the IFC 
architecture is implemented for the inner-loop adaptive 
control of the MAX Rover. Section 2 outlines the 
details of the implementation for the Rover system. 
Section 3 discusses Rover modeling for simulation and 
control system development. Section 4 presents the 
simulation results, and section 5, the hardware results. 
Finally section 6 summarizes the conclusions of this 
research effort and provides directions for future work. 
 
2. Rover guidance, navigation and control 
architecture 
 

Figure 1 outlines the Rover guidance, navigation, 
and control (GN&C) system. The guidance system 
consists of mission-specific path planning algorithms 
that compute way-points to generate the open-loop 
trajectory. The guidance system also includes a closed-
loop algorithm, which, based on the current Rover 
position, provides velocity and heading commands to 
align the Rover with the open-loop trajectory. The 
inner-loop control system computes the Rover actuator 
(throttle and steering) settings to meet these velocity 
and heading commands.  

The commanded values given by the guidance 
system do not take into account the dynamics of the 
Rover and can lead to actuator saturation and poor 

command following. The command values are 
therefore smoothed using a reference model. The 
velocity is smoothed by a first order reference model 
while the heading uses a second order reference model.  
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The velocity reference model provides reference 
velocity and reference acceleration. The second order 
heading reference model provides reference heading, 
reference yaw rate and reference yaw acceleration. 
These reference values along with the sensed states of 
the Rover are used in a proportional-integral (PI) 
feedback to compute the desired translational and yaw 
acceleration. 
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These desired values of translational and yaw 
accelerations are used to invert the dynamical model of 
the Rover to compute the corresponding throttle and 
steering actuator values. For a Rover model given as 
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the throttle and steering actuator settings are computed 
by equating the desired accelerations with the model. 
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Equation (6), and Eqs. (3-4) provide the corresponding 
error dynamics. 
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The choice of the proportional and integral gains 
provides the desired error transient characteristics. 
 
2.1. Adaptive control formulation 
 

The feedback linearization approach outlined in the 
previous sub-section assumes exact knowledge of the 
system dynamics. In cases of uncertainties in the 
dynamic modeling or changes in the dynamics during 
operation due to faults or degradation of the hardware, 

the controller needs to be adapted for providing the 
same level of performance. 

The GN&C architecture outlined in figure 1 
provides this adaptation by augmenting the desired 
acceleration signal, which goes into the dynamic 
inversion (Eq. 7). This augmenting signal is 
parameterized using an appropriate function-
approximator. In this case a neural network is chosen 
to provide this augmentation signal due to its universal 
function approximating capability. The weights of the 
neural network are then adapted to minimize the 
transient error. 

The desired acceleration with the neural network 
augmentation command is given as 
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Let the nominal model of the Rover be given as 
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and let the actual system dynamics be given by Eq. (5). 
The error in the system dynamics is represented as 
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The control is computed by inverting the nominal 
model as in Eq. (7) 
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Substituting Eq. (13) in Eq. (14) gives 
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which using Eqs. (10-11) gives  
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Equation (16) implies that if the neural network 
augmentation provides the error between the nominal 
model and the actual system, the velocity and the yaw 
rate error dynamics will again match with the desired 
second order response characteristics. 

The neural network can be parameterized in any 
convenient form. For the radial basis function neural 
network, the augmenting acceleration signals are given 
as 
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where VΦ  and rΦ  represent the appropriately chosen 
basis functions. The weight vectors, VW  and rW , are 
adapted based on the Lyapunov analysis given in [3] 
that guarantees boundedness of the system error and 
the weight vectors. 
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The coefficients, Vγ  and rγ , represent the learning 
rates in the weight update law, VP  and rP , the 
weighting coefficients in the chosen Lyapunov 
functions for each of the velocity and heading 

channels, and Ve  and re , the velocity and heading 
channel errors defined as 

 
rover rover_ref

rover rover_ref

V

r

V V

r r

= −

= −

e

e
 (19) 

This completes the adaptive control design for the 
Rover velocity and yaw rate channels. The choice of 
the radial basis functions used for designing the neural 
network dictates the quality of the adaptation and the 
error transients. 

 
3. Rover modeling 
 

The modeling of the MAX Rover was undertaken 
for supporting two key aspects of the control design. 
The control system uses dynamic inversion to compute 
the actuator commands. This requires a nominal model 
of the Rover as given by Eq. (12) that can be inverted 
quickly in real-time. The control system also needs to 
be tested on a high-fidelity simulation environment 
before hardware experimentation. The high-fidelity 
model needs to be sophisticated and incorporate Rover 
physical characteristics along with details of the 
operating surface. To satisfy these needs, a high 
fidelity model is developed for simulation purposes, 
and a comparative low fidelity model developed to be 
inverted in the control system.  

 
3.1. High-fidelity Rover model 
 

 
 

Figure 2. High-fidelity Rover model 
 
Figure 2 illustrates modeling the MAX Rover using 

rigid bodies connected by springs and dampers. The 
Rover is built as a 5 body system consisting of a 
chassis and 4 wheels. The chassis is represented by a 
uniform mass rectangular box and the wheels by 
uniform mass cylinders. The 5 body motion is 
characterized by various constraints. The relative 
rotation of the chassis with respect to the wheels in the 
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local Z-axis is constrained by the maximum steering 
angle in both directions. Similarly the translation of the 
chassis relative to the wheels in its local Z-axis is 
constrained by the maximum suspension travel in both 
directions. The wheels are constrained to rotate along 
the local X-axis alone. The friction between the wheels 
and the ground is modeled by the pyramid 
approximation to the Coulomb friction model. This 
model is built and simulated using an indigenously 
developed physics engine that can also render the 
Rover operation graphically. 

 
3.2. Low-fidelity Rover model 

 
The high-fidelity model described in the previous 

sub-section is difficult to be described in a closed-loop 
form, which can be inverted in real time. A 
comparatively lower fidelity model is therefore 
developed that captures the key physics of the system. 
The Rover model in a relative planar straight line mode 
of operation without hard cornering can be described 
using the following equations. 
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The front and rear wheel steering and actuator 
settings are allocated equally thereby reducing the 
dimension of control inputs to 2. 
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Equations (22,24) and (25-26) are used in inverting 
the dynamics and computing the control inputs given 
the desired translational and yaw accelerations. 
 
4. Simulation results 
 

The Rover GN&C system was simulated using the 
high-fidelity model. Figure 3 outlines the reference 
path that needs to be followed by the Rover. The 
rectangular path with rounded corners is assigned 
velocity profiles as shown in the figure. 

 
 

Figure 3. Reference path used for simulation studies 
 
The control system is developed in the Simulink 

environment. A shared memory interface is set up to 
transfer control inputs from Simulink to the C++ based 
high fidelity simulation, and system state variables 
from the simulation back to the Simulink based control 
system.  

 
4.1. Adapting for incorrect friction modeling 

 
A common source of Rover modeling error Rover 

arises from its operating surface friction. Higher than 
assumed friction will lead to a lagging trajectory while 
lower than assumed friction will lead to excessive 
throttle and braking. Figure 4 compares the resulting 
path profile with and without adaptation for an 
incorrectly used value of friction coefficient in the 
dynamic inverse. It can be observed that since the 
assumed value of friction is higher than its actual 
value, the path without adaptation results in a forward 
and backward motion. The path with adaptation, 
however, results in a smooth capture and following of 
the reference path.  

 
 
 
 
 
 
 
 
 
 
Figure 4. Rover path profile without and with 

adaptation 
 

Figure 5 compares the Rover velocity tracking 
performance without and with adaptation. The 
substantial improvement in following the reference 
profiles is clearly seen. Similar comparison is 
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presented in figure 6 for the Rover yaw angle and yaw 
rate profiles without and with adaptation. Finally figure 
7 compares the control inputs without and with 
adaptation. 
 
 
 
 
 
 
 
 
 
Figure 5. Rover velocity tracking without and with 

adaptation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Rover yaw angle and yaw rate tracking 
without and with adaptation. 

 
 
 
 

 

 
Figure 7. Rover wheel steering and throttle inputs 

without and with adaptation. 
 
5. Hardware testing 
 

 
 
 
 
 
 
 

 
Figure 8. The MAX Rover hardware platform 
 
Figure 8 presents the MAX hardware platform. The 

Rover has an on-board CPU with the Windows 2000 
operating system. The GN&C system is implemented 
using an indigenously developed modular Reflection 
architecture. This embedded software transports 
information between each of the software and 
hardware modules. The Rover state information is 
sensed using the on-board Crossbow NAV420 
integrated navigation system and global positioning 
system (INS/GPS) unit. The control inputs are 
generated by the Matlab- Simulink code running on the 
Central Processing Unit (CPU) on the MAX, and are 
transported to the corresponding actuators by the 
Reflection architecture. A ground station is set-up with 
an 802.11g  wireless connection between the ground 
station laptop and the Rover CPU. The ground station 
is used for remotely initiating and monitoring the 
performance of the hardware tests. 
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5.1. System Identification 
 

Several tests were run to identify the coefficients of 
the assumed linear model of the Rover. These tests 
were separated in two sets: one for the Rover velocity 
channel, and the other for the Rover heading channel. 
Figure 9 illustrates the throttle command given to 
identify the velocity dynamics and the resulting 
velocity profile while the steering command is fixed to 
zero. 

 
 
 
 
 
 
 
 

Figure 9. Identifying the Rover velocity dynamics 
 

 
 
 
 
 
 
 
 
Figure 10. Identifying the Rover yaw rate dynamics 
 
For identifying the coefficients of the heading 
dynamics, the throttle value was set at 0.35. Figure 10 
illustrates the commanded wheel angle and the 
resulting heading rate and velocity profile. Choosing 
different starting and end points in the tests, the 
coefficients in Eqs. (22) and (24) for each of these time 
windows were identified using a least squares fit. The 
different coefficient sets thus obtained were averaged 
since a single set of coefficients is used in the dynamic 
inversion. This identified set of coefficients is 
computed to be 
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The identified values for both the channels differed 
slightly depending on the particular choice of the 
selected data points. This variation was observed to be 
lesser on the heading channel than the velocity 

channel. This observation is attributed to two reasons. 
The velocity channel data is given by the INS unit that 
is rated for flight velocities and hence produces 
substantial estimation errors for the relatively low 
Rover velocity values. The second reason is that the 
velocity dynamics is nonlinear and the variation 
observed is related to the different values of the 
nominal velocity and heading rate. 

 Given the errors in the velocity channel, the 
adaptive control design is tested on the heading 
channel for the failed actuator scenario. The rear wheel 
steering is fixed at zero and the commanded trajectory 
is followed by the front wheel steering alone.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Heading and yaw rate tracking with 
adaptation (blue –reference, red –actual) 

 
Figure 11 illustrates the behavior of the yaw angle 

tracking for the first 100 seconds and the last 100 
seconds of the test to illustrate the effects of 
adaptation. Similarly, figure 12 illustrates the yaw rate 
tracking performance that is again presented for the 
first 100 seconds and the last 100 seconds of the test. It 
can be noted that without adaptation, the Rover yaw 
angle lags the desired value. Similarly the front wheel 
steering alone is unable to provide the desired yaw 
rates during the early phase of adaptation. Both these 
variables show substantial tracking improvement 
during the last 100 seconds thereby illustrating 
successful adaptation. 

 
6. Conclusion and future work 
 

In this research we initiated the development of the 
adaptive Rover-control technology based on the IFC 
legacy program. The adaptive control algorithm was 
developed and simulated for the Rover on a high-
fidelity simulation along with hardware testing on the 



MAX platform. The results suggest critical benefits of 
this adaptive control technology for handling modeling 
uncertainties as well as failed actuators. The hardware 
testing suggests a need for using nonlinear dynamics in 
the inversion. Existing literature in the vehicle 
dynamics field is being reviewed towards this effort 
[4]. The Rover velocity and position sensing is also 
being improved by incorporating individual wheel 
speed measurements and differential global positioning 
system (DGPS) measurements. 
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